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Regulation Thermography

The functions of the human body depend largely
on its temperature. In order to maintain an optimal
distribution of temperature throughout the body,
it possesses a complex control and regulating sys-
tem, the center of which is located in the hypotha-
lamic region of the brain. For example, in reaction
to incoming impulses in this region from cold or
warm receptors, the production of heat in the or-
ganism can be regulated by increasing or decreas-
ing metabolic activity. Regulatory impulses run
from the brain to the skin as well, where they can
influence the amount of heat that is perspired
through contraction of blood vessels. The nerves
through which these impulses pass can interact
with nerves running within the spinal column
from the internal organs to the brain. In this way a
pathological disturbance within an organ can lead
to a change in thermal regulation of the skin—this
is referred to as a reflex arc.

Regulation thermography attempts to measure
and interpret these changes in the regulatory be-
havior. The goal is to associate certain changes in
regulatory behavior with specific diseases. Accord-
ing to expert opinion, this is possible: an extensive
pool of pathological temperature patterns and
their diagnostic interpretation is available.

Regulatory behavior is determined by the two-
fold measurement of the test person’s body tem-
perature on defined parts of the body (areas). The
first measurement ensues after the test person has
undressed in an examination room with standard-
ized temperature and humidity. The room temper-
ature should be below normal body temperature,
which induces a cold stimulus that, in turn, stimu-
lates the regulatory system of the body. After a de-
fined period of time the measurement is repeated.
The body will then have reacted to the cold stimu-
lus. The comparison between the first and second
measurements allows a conclusion to be drawn as
to the regulatory activity of the skin.

The entirety of the measured temperatures is
referred to as a regulation thermogram. Fig. 5.6
depicts an ideal thermogram in form of a histo-
gram: shown as the temperature values of 60 are-
as. Abbreviated designations for areas can be seen
on the horizontal axis above on the diagram, the
first temperature measurements are the black
rectangles and the second are blue. All rectangles
refer to the horizontal black line, the forehead
temperature (measured first). The individual tem-
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Fig. 5.6 Anideal thermogram presented in the form of a
histogram.
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Fig. 5.7 For comparison, the thermogram of a woman with
mammary carcinoma.

perature values can be read on the left vertical ax-
is. Figure 5.7 depicts a pathological thermogram of
a woman with breast cancer.

Fuzzy Modeling of Expert Knowledge

The regulation thermogram encompasses temper-
ature measurements at 110 areas. Expert knowl-
edge of pathological activity in three areas within
the thoracic regions—the sternum, as well as the
two asymmetrically aligned pectoral muscle are-
as—serves as an example in the following thermo-
gram.
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These areas are used during evaluation of ther-
mograms in reference to breast cancer in women.
All further numeric values mentioned are more or
less accurate (according to current scientific
standards), but are to be taken merely as exam-
ples.

The following validation criteria are applied to
all three areas:

e Absolute temperature For each area, the dif-
ference between the first value at the area and
the first value on the forehead is tested. Differ-
ences in temperature smaller than -0.8 °K and
bigger than +0.2 °K are considered pathological.
The first event is termed a cold area, while the
latter case is considered a hot area. Overstep-
ping or falling short of the indicated boundaries
is considered to be all the more pathological,
the more pronounced the deviation.

¢ Regulation In this case, the difference between
the first and second measurement is observed
for each area. If the difference falls below
-1.1°K, this indicates a so-called hyperregula-
tion. Exceeding beyond the value -0.25°K, a
phenomenon known as paradoxical regula-
tion, is also considered pathological. When
comparing hyperregulation with paradoxical
regulation, the first is regarded to be less path-
ological.

The pathologies of absolute temperature and regu-
lation should be added for a combined overall

rating. This occurs according to the following

guidelines:

e Regulation pathologies carry more weight than
absolute temperature.

e When both pectoral muscle areas exhibit differ-
ent activities, the more pathological of the two
is included in the final assessment.

e Activity of the sternum area and the more path-
ological pectoral muscle areas are of equal im-
portance.

The valuation rules suggest fuzzy modeling using
two linguistic variables: “Abs Temp” as one varia-
ble to designate the absolute temperature of one
area, with the linguistic values “normal,” “cold,”
and “warm”; “Reg” as another variable with the
values “normal,” “hyper,” and “paradox” to record
the observed regulation.

Now these linguistic values need to be specified
through indication of fuzzy sets. Figure 5.8 shows
the fuzzy amounts of the values of the variable
“Reg.” These were determined using temperature
values denoted in the valuation rules, otherwise
modeling was kept fairly simple, since no further
information was specified.

An observed regulation of —0.1 °K as measured
at the sternum area was classified, for example, as
paradoxical with a degree of pathology approxi-
mately 0.8, as normal with a degree of approxi-
mately 0.2, and as hyperregulation with a degree
of 0.

Values of linguistic variable “Reg”
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Fig. 5.8 Definition of linguistic values.
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Fig. 5.9 Evaluation of a block of three fuzzy rules.

The assessment of an area as pathologically ac-
tive is determined based on linguistic variables,
separately for absolute temperature and regula-
tion, respectively. For regulation, “PathReg” is the
variable used, for example. Attributed linguistic
values would be “negative” (no pathological activ-
ity), “positive” (pathological activity is present)
and “suspicion” (suspicion of pathological activi-
ty). As already described, a fuzzy set is determined
for these linguistic values based on pre-existing
knowledge.

The expert rulings for assessment of regulation
of each of the three respective areas can now be
expressed by way of fuzzy rules as follows:

1. If (Reg = hyper), then (PathReg = suspicion)
2. If (Reg = normal), then (PathReg = negative)
3. If (Reg = paradoxical), then (PathReg = positive)

The application of this block of rules should offer
the user a “degree of pathology” for regulation ob-
served in the respective area. Figure 5.9 demon-
strates the process for determining the degree of
pathology for an entered value of -0.1°K for the
regulation: it is at approximately 0.68, clearly indi-
cating a pathological activity in the observed area
(0.0 = nonapplication of a fuzzy assertion; 1.0 = ac-
curacy of a fuzzy assertion).

In Figure 5.9 the first three lines of the graphic
stand for the three fuzzy rules in the sequence of
appearance (1-3): on the left side you see the fuzzy
sets for each of the linguistic values of the variable
“Reg” of the respective rule. The vertical line repre-
sents the observed regulatory value of -0.1 °K; the
height of the gray areas denote the degree of truth
of the denotations “Reg = hyper,” “Reg = normal” or
“Reg = paradox.”

On the right side you see the fuzzy sets for the
linguistic values of the variables “PathReg.” The
heights of the blue surfaces show the true values
for “PathReg = suspected” or “PathReg = negative,”
or “PathReg = positive.”

The last line of the graphic entails the result of
aggregation and defuzzification: the end result—
the degree of pathology of regulation at an area—is
depicted by a vertical bar.

Figure 5.10 gives an overall oversight of the de-
pendency of the degree of pathology on regulation
in areas observed.

In a similar way, expert behavior on activity of
absolute temperatures can be gathered with the
help of linguistic variables for absolute tempera-
tures and likewise linguistic variables for the de-
gree of pathology of absolute temperature.
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PathReg
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Fig. 5.10 Correlation between regulation and degree of
pathology.

Finally, the determined degree of pathology
for absolute temperatures and regulations of all
three areas must be combined to yield a single
value.

This occurs in two steps: first, a weighted mean
value is determined from the degrees of pathology
and regulation for each area. The fact that regula-
tion carries more weight is accounted for. In the
second step the third line of expert rules are fol-
lowed by combining the mean with the maximum
of the just calculated degree of pathology in the
three areas.

The minimum degrees of pathology can be seen
to lie between -0.8 °K and -0.6 °K. The visible in-
crement in degree of pathology in the left branch
of the function graphic shows the increasing hy-
perregulation. The right branch shows paradox
regulation. According to expert opinion, much
higher degrees of pathology are reached here in
comparison to the left branch. One can discern the
minimum degrees of pathology to fall between the
values -0.8 °K and -0.6 °K. The notable increase in
degree of pathology of the left branch of the func-
tion of the graph indicates the increasing hyper-
regulation. Paradox regulation is represented by
the right branch in the graph. Here considerably
higher degrees of pathology are reached than in
the left branch.

— Design of an Expert System for
Regulation Thermography

Regulation Thermography lends itself not only to
the presentation of knowledge via fuzzy logic, but
also other points important for the programming
of a medical expert system can be elucidated with
this example.

Creating a Body of Rules

The construction of fuzzy rules on the basis of
existing knowledge is basically also possible for
the layman. Nonetheless, some steps are necessary
during this process, which may require the collab-
oration between a medical expert and mathemati-
cian: the choice of methods to be used for logical
implication as well as aggregation and defuzzifica-
tion. These methods are, for the most part, deter-
mined at the beginning of the development
process of a system and are left unaltered in the
once functioning expert system. Nevertheless,
they are dependent on mode of application and
must be chosen via engagement with a medical ex-
pert.

Specification of linguistic values of fuzzy sets is
a different story: in this case expert knowledge is
incorporated, and the special structure of fuzzy
sets must be determined. In the example of “ele-
vated body temperature” this is given by the curve
depicted in blue (see Fig. 5.3, p. 57).

The medical expert normally does not have a
preconceived notion of such a structure. This fre-
quently evolves either indirectly from existing
knowledge or it must be determined through the
iterative process of trial and error: a backbone net-
work appropriate for the respective linguistic val-
ue is primarily set up, and then changes are made
to the details until they show the desired activity
within the expert system. The latter can naturally
only be appraised in dialogue with a medical ex-
pert.

Automatic Generation of Rules|
Hypotheses

The adaptive process for the definiton of fuzzy sets
described above can partially be automated, given
the appropriate data: a physician must specify the
desired output for a sufficiently large amount of
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input data into the expert system, based on his or
her expertise. Following entry of this training data
set into the expert system, the actual output is
compared with the desired output. On the basis of
comparison, the system is modified. This process is
repeated until a satisfactory accord between de-
sired and actual output is achieved. The modifica-
tion does not necessarily need to be performed
manually, but can be done using a computer soft-
ware program.

The process of automation of system modifica-
tion can be taken even a step further: given a train-
ing data set that is extensive enough, fuzzy rules
can directly be extracted from the latter using var-
ious mathematical procedures, and integrated into
the system’s rule databank. The physician is then
able to read these rules and verify their meaning,
possibly even testing them as hypotheses.

Neuronal Networks

Instead of using training data sets to develop fuzzy
rules, the desired system output can also be repro-
duced directly by creating a mathematical map-
ping. When input and output data are numerical
values, they lend themselves well to neuronal net-
works. They can be easily and swiftly modified to
account for additional new training data sets,
thereby enabling a constant stream of learning.

The disadvantage vs. the automatically generat-
ed fuzzy rules is that the developed depictions us-
ing neuronal networks are generally not useful for
medical interpretation. Combination of fuzzy rules
with neuronal networks is widely used and usually
leads to improvement in quality of output.

In the realm of complementary oncology, regu-
lation thermog raphy is used, among others, for

Diagnosis and therapy: system-theoretical model
Diagnosis -
’ Patient
Input > Output R
> Condition >
Therapy ~
Physician
Knowledge —
ex| erien?:e/ Data -
p —
R e Learning from many
diagnosis and ‘
support therapy € > input/output data
Mathematics

Fig. 5.11 Structure of an expert system for reqgulation thermography.
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early detection of cancer. Depending on the patho-
logical temperature patterns in the thermogram a
six-point scale (0-5) is devised to indicate tumor-
cell activity (TCA): A TCA of 0 designates “no trace
of tumor-cell activity detectable within the body.”
The more pronounced the observed pathological
patterns are, the higher the value will be for TCA.

From the 220 temperature values comprising
the thermogram, the TCA is determined to repre-
sent the classification profile. This is a situation in
which neuronal networks can be applied directly:
a neuronal network trained on the basis of a data
set commensurate in size can deliver an approxi-
mated TCA classification of new thermograms not
entailed within the training data set.

Within the context of expert systems for regu-
lation thermography there is yet another area of
application for neuronal networks: expertise for
determination of TCA classification can be divided
into “global” and “local” rules. The thermogram
can be subdivided into 10 groups of areas that do
not overlap. For each of these groups of areas there
is a set of expert rules that are only used by this
group and indicate a “degree of pathology” when
taken together. The degrees of pathology of the in-
dividual groups are ultimately merged through
“global” rules for TCA. These rules are far more dif-
ficult to determine than their “local” counterpart.
It therefore makes sense to (additionally) utilize

well-suited neuronal networks at this point: as in-
put the degrees of pathology of the groups of areas
are taken, and as output the TCA of a thermogram
is measured.

In total, the result for the case of regulation
thermography is the following extension (Fig.
5.11) of the expert system structure shown in Fig.
5.2: a neuronal network has been added for ap-
proximate estimation of TCA directly from the
thermogram. A so-called neuro-fuzzy system al-
lows for extraction of rules from a set of data as
well as providing a neuronal network for determi-
nation of TCA from the 10 degrees of pathology of
the area groups. Both components can be deliv-
ered and trained with data via a training module as
specified by a medical expert.
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